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Abstract. We present a detailed analysis of the implicit assumptions that lie at the basis 
of the proposed scaling relations for multifractal correlations. Our results show the validity 
of this scaling relation but also the presence of non-trivial amplitude properties. The 
conclusions of the present work are valid for general multifractal systems and may have 
particular relevance for the field of turbulence where these correlations are experimentally 
available. 

1. Introduction 

The properties of spatial correlation functions of multifractals or fractal measures have 
been recently considered by Cates and Deutsch (1987). By using rather intuitive 
arguments they were able to derive certain scaling relations for these correlation 
functions. Similar relations had also been derived for the scaling properties of correla- 
tions in Hamiltonian systems by Wegner (1985). 

Here we will present a more rigorous analysis of these correlations for multifractals. 
First the assumptions that lead to the scaling behaviour (Cates and Deutsch 1987) are 
formdated in a mathematical framework. We then analyse their validity in some 
particular but representative examples. The results are that: (i) the scaling properties 
obtained by Cates and Deutsch are indeed correct and (ii) the amplitude of the 
correlations can also be calculated exactly and it depends explicitly on the moments 
considered in the correlation functions. 

The paper is structured as follows. In 0 2 we present a general discussion of spatial 
correlations in multifractals. In 0 3 some exact relations concerning these correlations 
are discussed. In 0 4 we present an exact calculation for a specific example. Section 
5 contains the summary. 

2. General discussion 

In this section we give an explicit mathematical formulation to the assumption needed 
to derive the scaling behaviour of Cates and Deutsch (1987). In the following section 
we are going to discuss in detail these assumptions for the case of the generalised 
Cantor set (GCS). 
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Consider a fractal measure (distribution) embedded in a one-dimensional space 
with an overall size R and a lower cutoff a. We are interested in the properties of 
spatial correlation functions of the type 

where p(xi) is the total measure in a box of size a around a point xi = ia, N = R / a  
and r is an integer multiple of a. Note that we use the unrestricted correlation function. 
This means that our sum runs over both empty and non-empty boxes. By subdividing 
the system in boxes of size r it is useful to introduce the following notations. We 
define b ( r k )  as the total measure within the kth box of size r. By p.,(xf) we indicate 
the measure of the ith box of size a within the kth box of size r where k = 1,2,  . . . , N a / r .  
As a result we have Nr = R / r  boxes of size r, each containing Na = r / a  boxes of size 
a. This implies 

We can now rewrite (2.1) in the following form: 

(2.3) 

where the double chevrons denote averages over boxes of size r while the single 
chevrons refer to averages over boxes of size a. Since the two measures in (2.3) refer 
to different boxes of size r one might assume that they are uncorrelated, i.e. (assumption 
1) 

(2.4) k + l  n 
C m n ( r > = ( ( ( ~ r ( X : ) m ) ( p r ( X i  ))). 

We now multiply and divide (2.4) by the same quantity 

Now the terms within single chevrons have all been normalised and in view of the 
assumed self-similarity of the distribution these terms are now all equal and independent 
of k. This allows us to bring them outside the double chevons and to eliminate the 
index k within the single chevrons. We thus obtain 

The second assumption is to assume that we can replace the index k + 1 by k in 
the double chevrons, i.e. (assumption 11) 

(2.7) 
As we are going to see later this assumption is only valid for the scaling behaviour 
while the amplitude will be shown to depend explicitly on m and n. Using (2.7) 
together with the standard scaling relations for the moments of multifractals (Halsey 
et a1 1986) 

( ( f i (rk)m))-  ( R / r ) - T ( m ) - l  (2.8) 

(2.9) 
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0 

one readily obtains the final result 

Cmn ( r )  - ( R / a )' ( r /  a ) ' 
y = - T (  m + n )  - 1 

z = r ( m +  n) - . (m)  - T ( n )  - 1. 

(2.10) 

(2.11) 

(2.12) 

Note that if one had used the restricted definition for (2.1), implying summing only 
over non-zero measures, then (2.11) and (2.12) would show Do instead of 1, where Do 
is the fractal dimension of the set on which the measure is not zero. 

1 - - - - - -  - -  - -  

3. Exact properties of Cmn(r) for the generalised Cantor set 

In order to get some insight into the properties of the correlation function (2.1) it is 
useful to consider the specific example of the generalised Cantor set (Halsey et al 
1986, Siebesma and Pietronero 1986, Pietronero and Siebesma 1986). This archetype 
of a multifractal can be considered as the generalisation of the Cantor set in the sense 
that different weights are given to the different segments in a multiplicative way. From 
now we are going to consider for simplicity only the specific case shown in figure 1 

0 

c i 

3 1  i p = 2  

4 

X 

Figure 1. First steps of the construction of the generalised Cantor set used as an example 
for the discussion of multifractal correlations. 
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where at every stage a segment is divided in three new segments of length one-third 
of the previous one, the central one having twice the weight of each of the lateral ones. 
It should be noted, however, that all the results we are going to obtain for this particular 
example are easily extendable to many more cases including GCS in which the dimension 
of the support of the measure is less than one. 

The overall size is R = 1 and the lower cutoff is a = (f)", where p is the order of 
the iteration. In figure 2(a) the function C,,,,,(r) (equation (2.1)) is shown for p = 9 
and m = n = 2. At first sight Cm,(r) appears rather irregular but one can see from its 
integral (figure 2(b)) that a well defined power law can be associated with it in the 
average sense. Concerning the detailed structure of Cm,( r) one can easily observe that 
Cmn( r) = constant for discrete sets of values of type 

j = 1,2,  . * * . rj E (xj; x,~; ~ ~ ~ 2 ;  . . .) (3.1) 
Such a property can be easily proven by using some permutation symmetries. Consider 
therefore the GCS as a string of values where the ith value corresponds to the measure 
in the ith box. We then introduce the string X defined as the set of N values 

(3.2) x = (x,; x2;. . . ; Xh') 

and the corresponding multiplication rules 
N 

X O X  = (xox,; xox,; . . . ; XOXN) kx= yix.  
i = l  

(3.3) 

The string of values corresponding to the GCS after p iterations can now be written as 

(Pl, cL2, cLJ i f p = l  
i f p >  1. (3.4) 

It is now easy to prove that C,,,,(r) = constant for a set of values as in (3.1). For j = 1 
this implies proving that 

3 p  

1 p m ( x , ) ~ " ( x i + r ) = c o n s t a n t  f o r r = l , 3 , 3 2  , . . . .  (3.5) 
1=1 

0 2 4 6 8 10 
In i r )  blR) 

Figure 2. ( a )  Numerical calculation of Cmn(r )  for m = n = 2 for the GCS as given by the 
definition (2.1). ( b )  Integral of Cmn(r )  as given by (4.1). 
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This is equivalent to showing that the corresponding string has the following permuta- 
tion symmetry: 

x, = x,-,.xp. = xp,xp-p~ forp’= 1,2, .  . . . (3.6) 
This last property can be easily proved by induction from (3.4). This property of 
constancy of Cmn(r)  for some set of points does not, however, provide information 
on the average scaling behaviour because these constant values vary for different sets 
of points. The average scaling behaviour is quite clear in the integral of Cmn( r )  reported 
in figure 2( b)  and it will be the subject of the next section. 

4. Proof of the scaling behaviour of Cm.(r) for the ccs 

We discuss here the validity of the two assumptions that were made in 0 2 in order to 
derive the scaling behaviour of (2.10). The first assumption corresponds to replacing 
the average of the products of terms corresponding to two different boxes with the 
product of the separate averages (see (2.3) and (2.4)). If one computes directly (2.4) 
for the GCS it can be seen (figures 2(a) and 3(a))  that this equation reduces drastically 
the fluctuations but it has exactly the same slope as that arising from the original 
definition of Cmn(r)  (2.1). If, however, we consider the integral of Cmn(r)  that has 
much less fluctuation (figures 2( b) and 3( b)), one can actually detect a very small shift 
in the amplitude of the order of 0.5%. 

0 2 4 6 8 10 
I n  [ri (a//?) 

Figure 3. Same as figure 2 but Cmn(r)  is computed with the expressions corresponding to 
assumption I: (a )  as given by equation (2.4); ( b )  as given by equation (4.3). 

In order to understand these features it is convenient to study first the role of this 
assumption on the total number of pair products as functions of length scale in the 
integral of Cmn(r) .  This integral Zmn(r)  can be written in a discrete form as 

(4.1) 

We now consider the question of how many pair products are present within a length 
scale j = 1. It is clear from (4.1) that there will be N pairs for 16 r and zero pairs for 
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I : ,  r. If we define the function W(1) as the total number of pairs divided by the 
normalisation factor (in this case N), then we have 

f o r l s r  
for 1 > r. W (  I )  = (4.2) 

We now consider the same problem for the integral of Cm,(r) in the case when we 
make use of assumption I. We have 

(4.3) 

The calculation of the function W (  1 )  is now complicated by the fact that the normalisa- 
tion factor Nj depends explicitly on j. For 1 even we obtain 

min(2j - 1, I )  
W ( l ) =  

j=1/2+l  j2 
(4.4) 

while for 1 odd the minimum value o f j  is +(I + 1). For 1, r >> 1 we can take the continuum 
limit. This gives 

W(1) = 2 In 2 - l / r  f o r l < r  (4.5) 
W(1) = 2 ln(2r/l) + (1/r) -2 for r < 1 < 2 r  (4.6) 
W(l)=O for 1 > 2r. (4.7) 

It is clear therefore that the shape of the functions given by (4.2) and (4.5)-(4.7) is 
different because the first one is just a step function while the second shows a continuous 
decay. The two functions, however, decay over the same characteristic length. For 
this reason the scaling properties are identical and only a small shift in the amplitude 
is produced by assumption I. 

Assumption I1 consisted in the replacement of the index k +  1 by k in the double 
chevron of (2.7). We now consider an explicit calculation of the function 

F( r, = (( fi  ( rk mfi ( rk+l  )> (4.8) 
for different values of the box size r. Looking at figure 4 we can see that for r = R / 3  

'. -J+ '. - -1 

Figure 4. Schematic picture of the multiplication processes necessary to explain the scaling 
relation (4.12). 
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we have the largest non-trivial level of coarse graining of our distribution and the 
evaluation of (4.8) consists simply of the two products corresponding to the two curved 
full arrows in figure 4. This gives 

F ( f R )  =f(P;"Pz"+P?PC). (4.9) 

At the next level of coarse graining the internal arrows of the three blocks (figure 4) 
can be expressed in terms of F(fR)  and a similar relation can also be found for the 
two curved broken arrows that connect the three blocks. We can then write 

(4.10) 

By similar arguments it can be shown that the next level of coarse graining ( r  = ( f )3R)  
gives rise to 

F((f)*R) = [ ~ ( 2 p ; " ' " + p ~ + "  )F ( fR)  +fp;"'"F(fR)]. 

F((f )3R)  = [f(2pT'" +-p?'")F((f)2R) + (f~pl"'")~F(fR)].  (4.11) 

These relations can be generalised for the pth level of coarse graining by the following 
iterative relation: 

F((f)'R) = bF((f)"-"R) + c(p-l 'F(iR) 

(4.12) c = I  m+n b = +(2p;"+" +pT'" ) 3pl . 
This relation is equivalent to the more transparent scaling relation 

F(fr) = ( b + c ) F ( r ) -  bcF(3r). (4.13) 

If we now write down the corresponding transfer matrix it is easy to observe that b 
and c are the eigenvalues. Since b > c the scaling relation (4.13) can be further simplified 
asymptotically into 

F(fr)  = bF( r) .  (4.14) 

The validity of (4.14) can be easily checked by reinserting it in (4.13). 
The final scaling behaviour of F(r) is therefore 

F(,.) = ( ( ~ ( ~ ~ ) m f i ( ~ & + ~ ) n ) ) -  r(ln bj/ ln(1/3) = , . r ( m + n ) + l  (4.15) 

where 7 was introduced in (2.8). Clearly ((fi(rk)"'+")) has the same scaling as F ( r )  
which completes the proof of assumption I1 as far as scaling is concerned. 

In order to study the effect of this assumption on the amplitude we consider the ratio 

For a generic value rk = the numerator gives 

((fi(rk)(*+"')) = ( fb)N.  

(4.16) 

(4.17) 
For the denominator one can use the scaling relation given by (4.13) (non-asymptotic). 
From the corresponding transfer matrix one obtains 

In the limit N + CO (note that b > c) we obtain finally 

(4.18) 

(4.19) 
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-35 .5  
- - 
2- - 3 7 . 0  
4" 
= - 3 8 . 5  

-30.0 - - 
-31 .5  

?. . - 
= -33 0 

0 2 L 6 8 10 
hi,-1 i a l R i  

Figure S. Numerical calculation of ( a )  C m n ( r )  and ( b )  I,,,"( r )  after assumption I1 (equation 
(2.7)). Note that I,,, , ,(r) is shifted with respect to figure 2 ( b )  just by the factor Q given by 
equation (4.19). 

This shows therefore that assumption I1 leaves the scaling invariant but changes the 
amplitude by a non-trivial prefactor, explicitly dependent on m and n. In figure 5 we 
report a numerical calculation corresponding to assumption I1 that shows a shift in 
prefactor, with respect to the original correlation function, exactly as predicted by (4.19). 

5. Discussion and summary 

In conclusion we have analysed in detail the implicit assumptions that lie at the basis 
of the proposed scaling relation for multifractal correlations (Cates and Deutsch 1987). 
Our results show that the scaling behaviour of Cates and Deutsch (1987) is indeed 
correct. However, non-trivial properties of the amplitude can also be understood along 
the lines discussed here. 

In our discussion we have mainly referred to the generalised Cantor set in one 
dimension. However, the results can be easily generalised for distributions embedded 
in d dimensions which have a generator. These are distributions for which there always 
exists a length scale r such that: 

/ 

\ k  

One then readily obtains the general final result: 

C m , ( r )  - ( R / a ) y ( r / a ) '  (5.2) 
y = -7( m + n )  - d (5.3) 
Z =  7 ( m  -k n) - T ( m )  - T ( n )  - d. (5.4) 

One of us (Siebesma 1988) recently investigated the validity of (5.2)-(5.4) for 
self-similar distributions which do not possess the property (5.1) like the critical 
wavefunctions corresponding to an incommensurate potential (Siebesma and 
Pietronero 1987). 
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It is interesting to note that similar relations have also been derived for the scaling 
properties of correlations in Hamiltonian systems (Wegner 1985). 

Finally it should be mentioned that the correlations discussed have a direct applica- 
tion in the field of fully developed turbulence in three dimensions. It provides a direct 
proof of the conjecture (Frisch er a1 1987) which relates the energy dissipation 
correlation function with the structure functions. These are defined as: 

( I M x ) I P ) -  l5p (5.5) 

where 8 u l ( x )  denotes the velocity difference on a distance 1 at a point x and the 
chevrons imply an unnormalised spatial average. We want to relate (5.4) with the 
energy dissipation correlation function: 

( E ~ ( x ) E ~ ( x + ~ ) ) -  r - p  (5.6) 

where e I ( x )  is the rate of energy dissipation on an area of linear size 1 centred around 
x. If we use the well established relation 

d X )  - h ( x ) 3 / 1  (5.7) 

CL=253-&. (5.8) 

then the application of the scaling results (5.1)-(5.3) directly gives (for l<< r )  the result 

It can be easily checked that (5.7) holds for both the random p model (Benzi et a1 
1984) and the log-normal model (Kolmogorov 1962). 
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